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Introduction 

Engineering-level atmospheric models for Titan and Neptune have been developed for use in 
NASA’s systems analysis studies of aerocapture applications in missions to the outer planets. 
Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 
2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are 
called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of 
Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- 
Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems 
design. 

Figure 1 compares density-height profiles for Earth, Mars, Titan, and Neptune. Relatively low 
scale heights ( - 10 km) make densities for Earth and Mars drop rather rapidly with altitude. 
Significantly higher scale height values for Titan and Neptune ( - 40 km) make these atmospheres 
considerably “thicker”. Titan’s large scale height is due to its low gravity, while that for Neptune is 
due to its low atmospheric mean molecular weight. Vertical dotted lines in Figure 1 show density 
values and altitudes at which aerocapture or aerobraking maneuvers would occur on these planets. 
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Figure 1 - Typical density versus altitude on Earth, Mars, Titan, and Neptune. 
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Figure 2 - Minimum, average, and maximum density versus altitude for (a) Titan (Yelle et al., 1997) 
and (b) Neptune (developed from data in Cruikshank, 1995). 

Basis for the Atmomheric Models 

In GRAM and Mars-GRAM, input values for date, time, latitude, longitude etc. are used to 
calculate planetary position and solar position, so that effects of latitude variation, and seasonal and 
time-of-day variations can be computed explicitly. A simplified approach is adopted in Titan-GRAM 
and Neptune-GRAM whereby these effects (as well as effects of relatively large measurement 
uncertainties for these planets) are represented within a prescribed envelope of minimum-average- 
maximum density versus altitude. Figure 2(a) shows this envelope for Titan, for which engineering 
atmospheric profiles of Yelle et al. (1997) are used. For Neptune, data from Cruikshank (1995) were 
employed to generate a comparable envelope, shown in Figure 2b. 

A single model input parameter (Fminmax) allows the user of Titan-GRAM or Neptune- 
GRAM to select where within min-max envelope a particular simulation will fall. Fminmax = -1, 0, or 
1 selects minimum, average, or maximum conditions, respectively, with intermediate values 
determined by interpolation (i.e. Fminmax between 0 and 1 produces values between average and 
maximum). Effects such as variation with latitude along a given trajectory path can be computed by 
user-selected representations of variation of Fminmax with latitude. 

Perturbation magnitudes in Titan-GRAM and Neptune-GRAM are estimated from a 
methodology similar to that of Strobe1 and Sicardy (1997), based on expected wave saturation effects. 
In particular, perturbation magnitudes are modeled from an approximate fit to the wave saturation 
condition 

P ' ~ ~ ~  /PO = [U(2 n: H)] ( 1 + [U(2 n H)]2)1'2 ( dTddz + g/C, ) / ( g/R ) . (1) 

where H is pressure scale height ( R TO / g ), R is gas constant, g is acceleration of gravity, To is 
background mean temperature, and C, is specific heat at constant pressure. Parameters g/Cp and glR 
are known as adiabatic lapse rate and auto-convective lapse rate, respectively. Except for some slight 
differences in numerical factors, this is the same as equation (10) in Section 3 of the Mars-GRAM 3.34 
report (Justus et al., 1996). Model perturbation magnitudes are illustrated in Figure 3. 
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Figure 3 - Perturbation magnitudes in (a) Titan-GRAM, and (b) Neptune-GRAM. Model values 
approximate equation ( l), with ratio UH=2 and dTddz from respective average atmospheres. 
Textured line in (a) is estimated value from Figure l(a) of Strobe1 and Sicardy (1997). 

Samde Model Results 

Sample Monte-Carlo outputs from Titan-GRAM and Neptune-GRAM are shown in Figure 4. 
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Figure 4 - Sample Monte-Carlo perturbation profiles from (a) Titan-GRAM and (b) Neptune-GRAM 
for Fminmax = - 1,O and 1. Density values are expressed as percentage deviation from average density 
(Fminmax = 0) profile value. 
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Conclusions 

Titan-GRAM and Neptune-GRAM are engineering-level atmospheric model for Titan and 
Neptune, suitable for a wide range of mission design, systems analysis, and operations tasks. For 
orbiter missions, Titan-GRAM and Neptune-GRAM applications include analysis for aerocapture or 
aerobraking operations, analysis of station-keeping issues for science orbits, analysis of orbital 
lifetimes for end-of-mission planetary protection orbits, and atmospheric entry issues for accidental 
break-up and burn-up scenarios. For Titan lander missions, Titan-GRAM applications include analysis 
for entry, descent and landing (EDL), and guidance, navigation and control analysis for precision 
landing. Using Titan-GRAM or Neptune-GRAM perturbation models in Monte-Carlo mode make 
them especially suited for design and testing of guidance, navigation, and control algorithms and for 
heat loads analysis of thermal protection systems. 
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